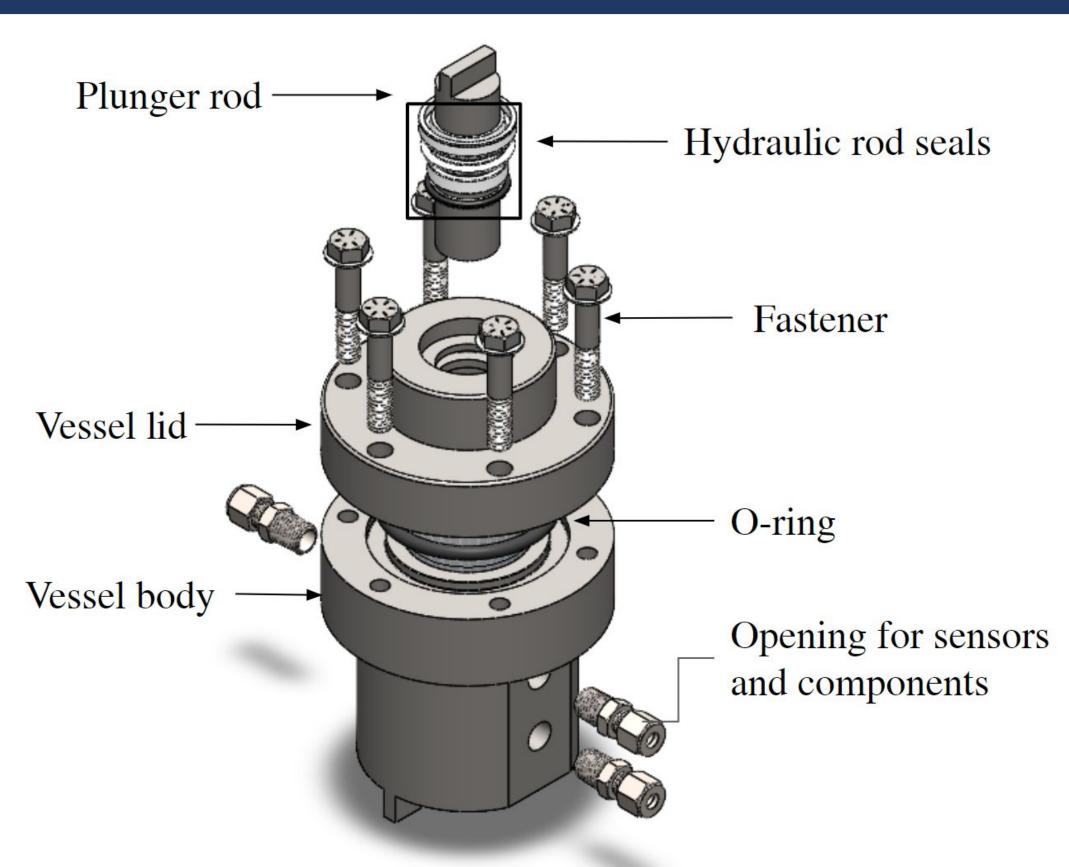
Skeletal Organoid Bioreactor

Damon Artis - Daniel Lawson - Lars Boddie - Minh Truong - Zachery Cheung

Background (Motivation)


Motivation: To support research in developing cartilage with better mechanical properties to devise better treatments for cartilage degradation.

Approach: Current methods grow cartilage organoids in a stress-free environment. This project seeks to create a bioreactor that uses a hydraulic force machine to apply cyclic hydrostatic pressure to the cells during growth.

Problem Statement

To design a bioreactor capable of holding a bag of cells in water at 37°C with cyclic hydrostatic pressure up to 1500 psi at 1 Hz

Design Overview / Challenges

Bioreactor Components

Primary challenge: Withstanding high pressure (1500 psi) Secondary challenge: Maintaining temperature (36-37°C) Design features:

- No welded components to avoid specialized welding requirements and costs for high pressure systems
- Utilizes hydraulic cylinder seals rated for high pressures (< 2300 psi) to satisfy loading requirements
- High lid and wall thickness for factor of safety greater than 1.7
- Fasteners and seals selected to prevent failure at vessel lid and body interface
- Sweater crocheted for thermal insulation

Background Analysis

Force and Displacement

Spec. Vol. at 37°C and 1 atm: $0.0010066 \frac{m^2}{ka}$ **\Delta Volume**: $0.3576\% \times 240mL = 0.863mL$

Spec. Vol. at 37°C and 10MPa: $0.001003 \frac{m^3}{kg}$ Displacement: $\frac{0.863}{\pi r^2} = \frac{0.863}{\pi (1.27cm)^2} = 1.7mm$ Volume differential: $\frac{1006.6-1003}{1006.6} = 0.3576\%$ Max Force: $PA = 1000 \frac{N}{m^2} \times 5.07 cm^2 = 5,067N$

Bolt Force: 15,201/6 = 2,533N

Force exerted on lid by pressure Lid Force: $PA = 1000 \frac{N}{cm^2} \times 15.2 cm^2 = 15,201N$

Structure Analysis

Circumferential and Longitudinal Stress

Shell Thickness Calculations

- E = 29000 ksi $\bullet \quad \text{Max K}_{2} = 3$
- ASME Chapter VIII Pressure Vessel Code: "The primary plus secondary stresses and localized discontinuities shall be limited to S_{pS} , where $S_{pS}=3S$, and S is the maximum allowable stress of the material at temperature [and B > S where $B = \frac{0.125E}{(2R/t)}$]"
 - t = 0.56"

Bolt Stiffness

Material Stiffness

Cyclic Loading Safety Factor

- Ro = 3.5 in
- B = 517000 ksi
- $S_{PS} = 75000*3 = 225000 \text{ ksi}$
- B > 225000
- Safety Factor = $B/S_{ps} = 2.3$

 $\frac{0.5774\pi Ed}{\ln^{\frac{(1.155t+D-d)(D+d)}{(D+d)}}} = 5177 \frac{kip}{in}$

Lid Thickness Calculations

ASME Chapter VIII Pressure Vessel Code Standards:

stress concentration:

- d: inner diameter = 2.9"
- C: joint factor = 0.3• P: pressure = 1500 psi
- S: $stress_{max} = 75 \text{ ksi}$
- E: joint efficiency =1
- W: bolt load = 26573 lbf • h_G : gasket line= 1.343"
- $t_1 = 0.531$ "

= D

UG-34 - Lid thickness w/o UG-39 Reinforcement of

Pretension Coefficient

Pretension Torque

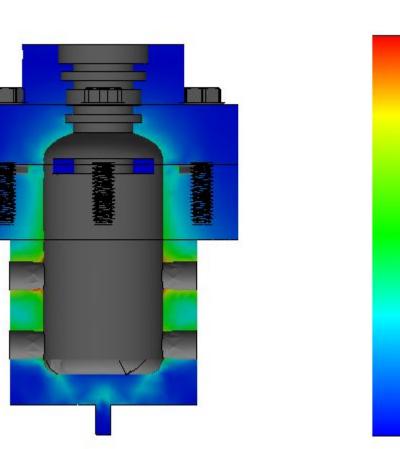
 $A = 0.5d_{p}t_{v} + t_{v}t_{b}(1 - f_{r1})$

central holes in flat lids:

- d: piston diameter = 1"
- t: vessel thickness = .56" • t: nozzle thickness = .86"
- $\bullet \quad f_{r1} : \frac{UTS_{Nozzle}}{UTS_{Vessel}} = 1$

 $K = \left(\frac{d_m}{2}\right) \frac{\tan(\lambda) + f(\sec(30))}{1 - f(\tan(\lambda) \sec(30))} + 0.625 f_c = 0.2 *$

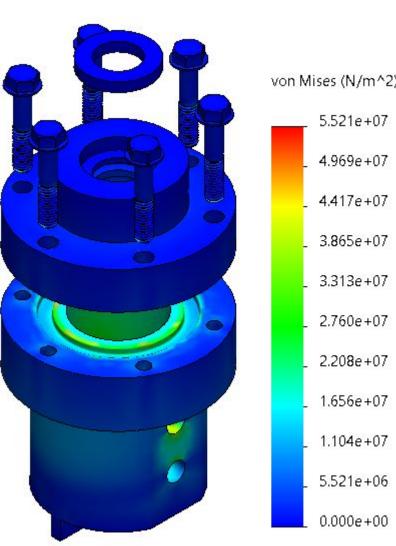
*Corroborated with Table 8-15, K = 0.2


 $T = KF_{\cdot}d = 43.6 ftlb$

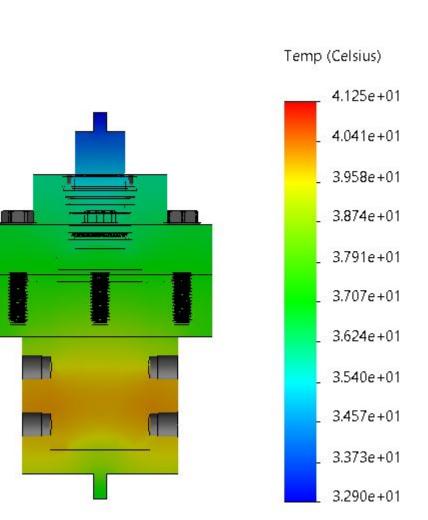
Joint Separation Safety Factor

- $A = 0.28 \text{ in}^2$
- $A_{applied}$: $t_n * 2 * 1 = 1.72$
- Safety factor: 6.124

Design Validation


Pressure FEA

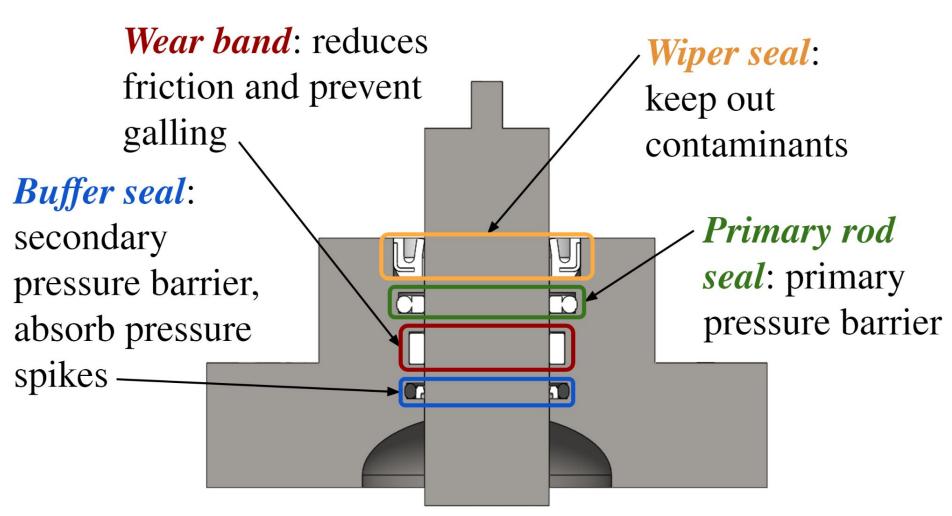
Max stress, located at the


lid and body interface, is

Stress distribution with 10 MPa (~1450 psi) internal load applied

Temperature FEA

less than 7 MPa


Temperature distribution with 12 Watts applied to the sides and 25°C natural convection on all other faces

Pressure Validation at 1500 psi

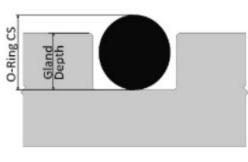
Pressure test was conducted using press machine where pressure was applied and maintained at 1511 psi

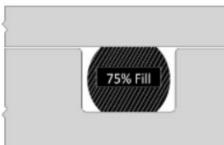
Seal Analysis

Fastener Analysis

• Rod end seals used in hydraulic cylinders rated for 2300 psi

Input Values


 $F_{i} = 0.75F_{m} | 6.975ksi$


23. 2*ksi* 3

1767. 1*lbf*

• Material selection: Bronze filled PTFE. Has self lubricating properties, applicable for dry conditions.

O-Ring Compression and Fill Ratio for Groove Design

Targeted 25% compression ratio and 75% gland fill for static face seal to design grooves with sufficient gland depth and width

Acknowledgements

A BIG thank you to: Dr. Shefelbine, Kathryn Yammine and Matt Shoulders of MIT, Shireen Lamande of MCRI, David Diamond of Precision Fabricators, Jeremy Johnson of Buccheri Hydraulics, Professor Allshouse, and Professor Gouldstone

Future Work / Exit Strategy

Future Work:

- Streamline temperature control, add backordered thermistor, and calibrate Arduino control
- Add and calibrate release valve spring
- Add filling valve so caps do not need frequent replacement

Exit Strategy:

Dr. Shefelbine's lab will use our hand-off documents to finish the work listed above and conduct a full pressure and temperature test on the hydraulic Instron. From there, the vessel will be in her lab helping to grow cartilage cells!